Mixtures of skewed Kalman filters
Hyoung-Moon Kim,
Duchwan Ryu,
Bani K. Mallick and
Marc G. Genton
Journal of Multivariate Analysis, 2014, vol. 123, issue C, 228-251
Abstract:
Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew-t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments.
Keywords: Closed skew-normal distribution; Discrete mixture; Kalman filter; Scale mixtures; Sequential importance sampling; Closed skew-t distribution (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13001942
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:123:y:2014:i:c:p:228-251
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.09.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().