Integrative correlation: Properties and relation to canonical correlations
Leslie Cope,
Daniel Q. Naiman and
Giovanni Parmigiani
Journal of Multivariate Analysis, 2014, vol. 123, issue C, 270-280
Abstract:
The integrative correlation coefficient was developed to facilitate the validation of expression microarray results in public datasets, by identifying genes that are reproducibly measured across studies and even across microarray platforms. In the current study, we develop a number of interesting and important mathematical and statistical properties of the integrative correlation coefficient, including a unique permutation-based null distribution with the unusual property that the variance does not shrink as the sample size increases, discussing how these findings impact its use and interpretation, and what they have to say about any method for identifying reproducible genes in a meta-analysis.
Keywords: Statistics; Bioinformatics; Gene expression; Correlation; Cross-study validation; Reproducibility (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13002030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:123:y:2014:i:c:p:270-280
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.09.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().