A variable selection criterion for linear discriminant rule and its optimality in high dimensional and large sample data
Masashi Hyodo and
Tatsuya Kubokawa
Journal of Multivariate Analysis, 2014, vol. 123, issue C, 364-379
Abstract:
In this paper, we suggest the new variable selection procedure, called MEC, for linear discriminant rule in the high dimensional and large sample setup. MEC is derived as a second-order unbiased estimator of the misclassification error probability of the linear discriminant rule (LDR). It is shown that MEC not only asymptotically decomposes into ‘fitting’ and ‘penalty’ terms like AIC and Mallows Cp, but also possesses an asymptotic optimality in the sense that MEC achieves the smallest possible conditional probability of misclassification in candidate variable sets. Through simulation studies, it is shown that MEC has good performances in the sense of selecting the true variable sets.
Keywords: Asymptotic optimality; High dimension and large sample; Linear discriminant analysis; Misclassification error; Multivariate normal; Second-order approximation; Variable selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13002121
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:123:y:2014:i:c:p:364-379
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.10.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().