Asymptotically efficient estimation under semi-parametric random censorship models
Gerhard Dikta
Journal of Multivariate Analysis, 2014, vol. 124, issue C, 10-24
Abstract:
We study the estimation of some linear functionals which are based on an unknown lifetime distribution. The observations are assumed to be generated under the semi-parametric random censorship model (SRCM), that is, a random censorship model where the conditional expectation of the censoring indicator given the observation belongs to a parametric family. Under this setup a semi-parametric estimator of the survival function was introduced by the author. If the parametric model assumption is correct, it is known that the estimated functional which is based on this semi-parametric estimator is asymptotically at least as efficient as the corresponding one which rests on the nonparametric Kaplan–Meier estimator.
Keywords: Survival analysis; Censored data; Semi-parametric random censorship model; Asymptotic efficiency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13002091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:124:y:2014:i:c:p:10-24
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.10.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().