Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers
Daeyoung Kim and
Byungtae Seo
Journal of Multivariate Analysis, 2014, vol. 125, issue C, 100-120
Abstract:
Gaussian mixtures are very flexible in representing the underlying structure in the data. However, the likelihood inference for Gaussian mixtures with unrestricted covariance matrices is theoretically and practically challenging because the likelihood function is unbounded and often has multiple local maximizers. As shown in the numerical studies of this paper, the presence of multiple local maximizers including spurious local maximizers affects the performances of model selection criteria used to choose the number of components. In this paper we propose a new type of likelihood-based estimator, a gradient-based k-deleted maximum likelihood estimator, for Gaussian mixture models. The proposed estimator is designed to avoid spurious local maximizers and choose a statistically desirable local maximizer in the presence of multiple local maximizers. We first prove the consistency of the proposed estimator and then examine, by a real-data example and simulation studies, the performance of the proposed method in the likelihood-based model selection criteria commonly used to assess the number of components in Gaussian mixture models.
Keywords: Gaussian mixture; Maximum likelihood; Spurious local maximizer; Unbounded likelihood (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X13002625
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:125:y:2014:i:c:p:100-120
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2013.11.018
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().