Efficient estimation for partially linear varying coefficient models when coefficient functions have different smoothing variables
Seong J. Yang and
Byeong U. Park
Journal of Multivariate Analysis, 2014, vol. 126, issue C, 100-113
Abstract:
In this paper we consider partially linear varying coefficient models. We provide semiparametric efficient estimators of the parametric part as well as rate-optimal estimators of the nonparametric part. In our model, different nonparametric coefficients have different smoothing variables. This requires employing a projection technique to get proper estimators of the nonparametric coefficients, and thus conventional kernel smoothing cannot give semiparametric efficient estimators of the parametric components. We take the smooth backfitting approach in conjunction with the profiling technique to get semiparametric efficient estimators of the parametric part. We also show that our estimators of the nonparametric part achieve the univariate rate of convergence, regardless of the covariate’s dimension. We report the finite sample properties of the semiparametric efficient estimators and compare them with those of other estimators.
Keywords: Partially linear varying coefficient models; Smooth backfitting; Semiparametric information bound; Profile likelihood (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:126:y:2014:i:c:p:100-113
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.01.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().