Compound p-value statistics for multiple testing procedures
Joshua D. Habiger and
Edsel A. Peña
Journal of Multivariate Analysis, 2014, vol. 126, issue C, 153-166
Abstract:
Many multiple testing procedures make use of the p-values from the individual pairs of hypothesis tests, and are valid if the p-value statistics are independent and uniformly distributed under the null hypotheses. However, it has recently been shown that these types of multiple testing procedures are inefficient since such p-values do not depend upon all of the available data. This paper provides tools for constructing compoundp-value statistics, which are those that depend upon all of the available data, but still satisfy the conditions of independence and uniformity under the null hypotheses. Several examples are provided, including a class of compound p-value statistics for testing location shifts. It is demonstrated, both analytically and through simulations, that multiple testing procedures tend to reject more false null hypotheses when applied to these compound p-values rather than the usual p-values, and at the same time still guarantee the desired type I error rate control. The compound p-values are used to analyze a real microarray data set and allow for more rejected null hypotheses.
Keywords: Empirical Bayes; False discovery rate; Multiple testing; Multiple decision function; Multiple decision process; Sample splitting; Test data; Training data; Microarray analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000153
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:126:y:2014:i:c:p:153-166
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.01.007
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().