Bayesian estimation of a bounded precision matrix
Hisayuki Tsukuma
Journal of Multivariate Analysis, 2014, vol. 127, issue C, 160-172
Abstract:
The inverse of normal covariance matrix is called precision matrix and often plays an important role in statistical estimation problem. This paper deals with the problem of estimating the precision matrix under a quadratic loss, where the precision matrix is restricted to a bounded parameter space. Gauss’ divergence theorem with matrix argument shows that the unbiased and unrestricted estimator is dominated by a posterior mean associated with a flat prior on the bounded parameter space. Also, an improving method is given by considering an expansion estimator. A hierarchical prior is shown to improve on the posterior mean. An application is given for a Bayesian prediction in a random-effects model.
Keywords: Hierarchical prior; Inadmissibility; Orthogonal invariance; Random effect model; Restricted parameter space; Statistical decision theory; Uniform prior; Wishart distribution (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:127:y:2014:i:c:p:160-172
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.02.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().