EconPapers    
Economics at your fingertips  
 

Graphical model selection and estimation for high dimensional tensor data

Shiyuan He, Jianxin Yin, Hongzhe Li and Xing Wang

Journal of Multivariate Analysis, 2014, vol. 128, issue C, 165-185

Abstract: Multi-way tensor data are prevalent in many scientific areas such as genomics and biomedical imaging. We consider a K-way tensor-normal distribution, where the precision matrix for each way has a graphical interpretation. We develop an l1 penalized maximum likelihood estimation and an efficient coordinate descent-based algorithm for model selection and estimation in such tensor normal graphical models. When the dimensions of the tensor are fixed, we drive the asymptotic distributions and oracle property for the proposed estimates of the precision matrices. When the dimensions diverge as the sample size goes to infinity, we present the rates of convergence of the estimates and sparsistency results. Simulation results demonstrate that the proposed estimation procedure can lead to better estimates of the precision matrices and better identifications of the graph structures defined by the precision matrices than the standard Gaussian graphical models. We illustrate the methods with an analysis of yeast gene expression data measured over different time points and under different experimental conditions.

Keywords: Gaussian graphical model; Gene networks; l1 penalized likelihood; Oracle property; Tensor normal distribution (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000633
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:128:y:2014:i:c:p:165-185

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.03.007

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:165-185