Confidence regions for images observed under the Radon transform
Nicolai Bissantz,
Hajo Holzmann and
Katharina Proksch
Journal of Multivariate Analysis, 2014, vol. 128, issue C, 86-107
Abstract:
Recovering a function f from its integrals over hyperplanes (or line integrals in the two-dimensional case), that is, recovering f from the Radon transform Rf of f, is a basic problem with important applications in medical imaging such as computerized tomography (CT). In the presence of stochastic noise in the observed function Rf, we shall construct asymptotic uniform confidence regions for the function f of interest, which allows to draw conclusions regarding global features of f. Specifically, in a white noise model as well as a fixed-design regression model, we prove a Bickel–Rosenblatt-type theorem for the maximal deviation of a kernel-type estimator from its mean, and give uniform estimates for the bias for f in a Sobolev smoothness class. The finite sample properties of the proposed methods are investigated in a simulation study.
Keywords: Confidence bands; Inverse problems; Nonparametric regression; Radon transform (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000529
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:128:y:2014:i:c:p:86-107
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.03.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().