Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy–Widom distribution
Marco Chiani
Journal of Multivariate Analysis, 2014, vol. 129, issue C, 69-81
Abstract:
We derive efficient recursive formulas giving the exact distribution of the largest eigenvalue for finite dimensional real Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). In comparing the exact distribution with the limiting distribution of large random matrices, we also found that the Tracy–Widom law can be approximated by a properly scaled and shifted gamma distribution, with great accuracy for the values of common interest in statistical applications.
Keywords: Random matrix theory; Characteristic roots; Largest eigenvalue; Tracy–Widom distribution; Wishart matrices; Gaussian Orthogonal Ensemble (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14000761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:129:y:2014:i:c:p:69-81
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.04.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().