Recurrence and ergodicity of diffusions
R. N. Bhattacharya and
S. Ramasubramanian
Journal of Multivariate Analysis, 1982, vol. 12, issue 1, 95-122
Abstract:
This article attempts to lay a proper foundation for studying asymptotic properties of nonhomogeneous diffusions, extends earlier criteria for transience, recurrence, and positive recurrence, and provides sufficient conditions for the weak convergence of a shifted nonhomogeneous diffusion to a limiting stationary homogenous diffusion. A functional central limit theorem is proved for the class of positive recurrent homogeneous diffusions. Upper and lower functions for positive recurrent nonhomogeneous diffusions are also studied.
Keywords: Stopping; times; space-time; harmonic; functions; invariant; measures (search for similar items in EconPapers)
Date: 1982
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(82)90086-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:12:y:1982:i:1:p:95-122
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().