Multivariate linear rank statistics for profile analysis
Vernon M. Chinchilli and
Pranab Kumar Sen
Journal of Multivariate Analysis, 1982, vol. 12, issue 2, 219-229
Abstract:
For some general multivariate linear models, linear rank statistics are used in conjunction with Roy's Union-Intersection Principle to develop some tests for inference on the parameter (vector) when they are subject to certain linear constraints. More powerful tests are designed by incorporating the a priori information on these constraints. Profile analysis is an important application of this type of hypothesis testing problem; it consists of a set of hypothesis testing problem for the p responses q-sample model, where it is a priori assumed that the response-sample interactions are null.
Keywords: General; multivariate; linear; model; linear; euality; restriction; linear; rank; statistics; profile; analysis; Union-Intersection; principle (search for similar items in EconPapers)
Date: 1982
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(82)90016-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:12:y:1982:i:2:p:219-229
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().