Maximizing the probability of correctly ordering random variables using linear predictors
Stephen Portnoy
Journal of Multivariate Analysis, 1982, vol. 12, issue 2, 256-269
Abstract:
Let (T1, x1), (T2, x2), ..., (Tn, xn) be a sample from a multivariate normal distribution where Ti are (unobservable) random variables and xi are random vectors in Rk. If the sample is either independent and identically distributed or satisfies a multivariate components of variance model, then the probability of correctly ordering {Ti} is maximized by ranking according to the order of the best linear predictors {E(Tixi)}. Furthermore, it orderings are chosen according to linear functions {b'xi} then the conditional probability of correct order given (Ti = t1; I = 1, ..., n) is maximized when b'xi is the best linear predictor. Examples are given to show that linear predictors may not be optimal and that using a linear combination other that the best linear predictor may give a greater probability of correctly ordering {Ti} if {(Ti, xi)} are independent but not identically distributed, or if the distributions are not normal.
Keywords: Linear; predictors; selection; index; multivariate; normal (search for similar items in EconPapers)
Date: 1982
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(82)90019-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:12:y:1982:i:2:p:256-269
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().