EconPapers    
Economics at your fingertips  
 

Infinitely divisible multivariate and matrix Gamma distributions

Victor Pérez-Abreu and Robert Stelzer

Journal of Multivariate Analysis, 2014, vol. 130, issue C, 155-175

Abstract: Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Particular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma convolutions is studied. In particular, a characterisation in terms of an Itô–Wiener integral with respect to an infinitely divisible random measure associated to the jumps of a Lévy process is established.

Keywords: Infinite divisibility; Random matrix; Cone valued distribution; Lévy process; Matrix subordinator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001006
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:130:y:2014:i:c:p:155-175

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.04.017

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:155-175