Generalized canonical correlation analysis for classification
Cencheng Shen,
Ming Sun,
Minh Tang and
Carey E. Priebe
Journal of Multivariate Analysis, 2014, vol. 130, issue C, 310-322
Abstract:
For multiple multivariate datasets, we derive conditions under which Generalized Canonical Correlation Analysis improves classification performance of the projected datasets, compared to standard Canonical Correlation Analysis using only two data sets. We illustrate our theoretical results with simulations and a real data experiment.
Keywords: Generalized canonical correlation analysis (GCCA); Classification; Low-dimensional projection; Stiefel manifold (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001201
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:130:y:2014:i:c:p:310-322
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.05.011
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().