Asymptotic expansion of the posterior density in high dimensional generalized linear models
Shibasish Dasgupta,
Kshitij Khare and
Malay Ghosh
Journal of Multivariate Analysis, 2014, vol. 131, issue C, 126-148
Abstract:
While developing a prior distribution for any Bayesian analysis, it is important to check whether the corresponding posterior distribution becomes degenerate in the limit to the true parameter value as the sample size increases. In the same vein, it is also important to understand a more detailed asymptotic behavior of posterior distributions. This is particularly relevant in the development of many nonsubjective priors. The present paper focuses on asymptotic expansions of posteriors for generalized linear models with canonical link functions when the number of regressors grows to infinity at a certain rate relative to the growth of the sample size. These expansions are then used to derive moment matching priors in the generalized linear model setting.
Keywords: Asymptotic expansion of the posterior; Generalized linear models; Canonical link function; High dimensional inference; Moment matching priors (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:131:y:2014:i:c:p:126-148
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.06.013
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().