An analysis of longitudinal data with nonignorable dropout using the truncated multivariate normal distribution
Shahab Jolani
Journal of Multivariate Analysis, 2014, vol. 131, issue C, 163-173
Abstract:
For a vector of multivariate normal when some elements, but not necessarily all, are truncated, we derive the moment generating function and obtain expressions for the first two moments involving the multivariate hazard gradient. To show one of many applications of these moments, we then extend the two-step estimation of censored regression models to longitudinal studies with nonignorable dropout, in the sense that the probability of dropout depends on unobserved, or missing, observations. With nonignorable dropout, direct maximization of the likelihood function can be computationally intensive or even infeasible. The two-step method in such cases can be an adequate substitute. In a set of simulation studies the developed two-step method and the maximum likelihood (ML) method are compared. It turns out that the proposed method preforms at least as well as the ML and provides a convenient alternative that can easily be implemented in standard software.
Keywords: Incomplete data; Missing not at random; Nonresponse; Selection bias (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:131:y:2014:i:c:p:163-173
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.06.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().