Detecting changes in cross-sectional dependence in multivariate time series
Axel Bücher,
Ivan Kojadinovic,
Tom Rohmer and
Johan Segers
Journal of Multivariate Analysis, 2014, vol. 132, issue C, 111-128
Abstract:
Classical and more recent tests for detecting distributional changes in multivariate time series often lack power against alternatives that involve changes in the cross-sectional dependence structure. To be able to detect such changes better, a test is introduced based on a recently studied variant of the sequential empirical copula process. In contrast to earlier attempts, ranks are computed with respect to relevant subsamples, with beneficial consequences for the sensitivity of the test. For the computation of p-values we propose a multiplier resampling scheme that takes the serial dependence into account. The large-sample theory for the test statistic and the resampling scheme is developed. The finite-sample performance of the procedure is assessed by Monte Carlo simulations. Two case studies involving time series of financial returns are presented as well.
Keywords: Change-point detection; Empirical copula; Multiplier central limit theorem; Partial-sum process; Ranks; Strong mixing (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001699
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:132:y:2014:i:c:p:111-128
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.07.012
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().