Lasso penalized model selection criteria for high-dimensional multivariate linear regression analysis
Shota Katayama and
Shinpei Imori
Journal of Multivariate Analysis, 2014, vol. 132, issue C, 138-150
Abstract:
This paper proposes two model selection criteria for identifying relevant predictors in the high-dimensional multivariate linear regression analysis. The proposed criteria are based on a Lasso type penalized likelihood function to allow the high-dimensionality. Under the asymptotic framework that the dimension of multiple responses goes to infinity while the maximum size of candidate models has smaller order of the sample size, it is shown that the proposed criteria have the model selection consistency, that is, they can asymptotically pick out the true model. Simulation studies show that the proposed criteria outperform existing criteria when the dimension of multiple responses is large.
Keywords: Multivariate linear regression; Model selection; High-dimensional data; Consistency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001845
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:132:y:2014:i:c:p:138-150
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.08.002
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().