Smoothed and iterated bootstrap confidence regions for parameter vectors
Santu Ghosh and
Alan M. Polansky
Journal of Multivariate Analysis, 2014, vol. 132, issue C, 171-182
Abstract:
The construction of confidence regions for parameter vectors is a difficult problem in the nonparametric setting, particularly when the sample size is not large. We focus on bootstrap ellipsoidal confidence regions. The bootstrap has shown promise in solving this problem, but empirical evidence often indicates that the bootstrap percentile method has difficulty in maintaining the correct coverage probability, while the bootstrap percentile-t method may be unstable, often resulting in very large confidence regions. This paper considers the smoothed and iterated bootstrap methods to construct the bootstrap percentile method ellipsoidal confidence region. The smoothed bootstrap method is based on a multivariate kernel density estimator. An optimal bandwidth matrix is established for the smoothed bootstrap procedure that reduces the coverage error of the bootstrap percentile method. We also provide an analytical adjustment to the nominal level to reduce the computational cost of the iterated bootstrap method. Simulations demonstrate that the methods can be successfully applied in practice.
Keywords: Bandwidth matrix; Bootstrap percentile method; Bootstrap percentile-t method; Iterated bootstrap method; Edgeworth expansion; Smooth function model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001857
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:132:y:2014:i:c:p:171-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.08.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().