Extremes of aggregated Dirichlet risks
Enkelejd Hashorva
Journal of Multivariate Analysis, 2015, vol. 133, issue C, 334-345
Abstract:
The class of Dirichlet random vectors is central in numerous probabilistic and statistical applications. The main result of this paper derives the exact tail asymptotics of the aggregated risk of powers of Dirichlet random vectors when the radial component has df in the Gumbel or the Weibull max-domain of attraction. We present further results for the joint asymptotic independence and the max–sum equivalence.
Keywords: Dirichlet distribution; Gumbel max-domain of attraction; Weibull max-domain of attraction; Tail asymptotics; Risk aggregation; Davis–Resnick tail property (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002255
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:133:y:2015:i:c:p:334-345
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.09.018
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().