Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters
Ting Yan,
Yunpeng Zhao and
Hong Qin
Journal of Multivariate Analysis, 2015, vol. 133, issue C, 61-76
Abstract:
Maximum entropy models, motivated by applications in neuron science, are natural generalizations of the β-model to weighted graphs. Similar to the β-model, each vertex in maximum entropy models is assigned a potential parameter, and the degree sequence is the natural sufficient statistic. Hillar and Wibisono (2013) have proved the consistency of the maximum likelihood estimators. In this paper, we further establish the asymptotic normality for any finite number of the maximum likelihood estimators in the maximum entropy models with three types of edge weights, when the total number of parameters goes to infinity. Simulation studies are provided to illustrate the asymptotic results.
Keywords: Maximum entropy models; Maximum likelihood estimator; Asymptotic normality; Increasing number of parameters (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14001961
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:133:y:2015:i:c:p:61-76
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.08.013
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().