Canonical correlation analysis for irregularly and sparsely observed functional data
Hyejin Shin and
Seokho Lee
Journal of Multivariate Analysis, 2015, vol. 134, issue C, 1-18
Abstract:
Several approaches for functional canonical correlation analysis have been developed to measure the association between paired functional data. However, the existing methods in the literature have been developed for dense and balanced functional data, and they cannot be directly applicable to the situations where the observed curves are recorded in the irregular and sparse fashion. In this paper, we model the associations between paired functional data into a linear mixed-effects model framework by relating two sets of curves using canonical correlation analysis. The proposed approach automatically deals with irregularly or sparsely observed functional data, and brings a new insight into the interpretation of canonical correlation analysis. Numerical studies are carried out to demonstrate finite sample behavior. Two real data applications are provided to illustrate the methodology.
Keywords: Canonical correlation analysis; Functional data analysis; Linear mixed-effects model; Longitudinal data; Reproducing kernel Hilbert spaces (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:134:y:2015:i:c:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.10.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().