EconPapers    
Economics at your fingertips  
 

Canonical correlation analysis for irregularly and sparsely observed functional data

Hyejin Shin and Seokho Lee

Journal of Multivariate Analysis, 2015, vol. 134, issue C, 1-18

Abstract: Several approaches for functional canonical correlation analysis have been developed to measure the association between paired functional data. However, the existing methods in the literature have been developed for dense and balanced functional data, and they cannot be directly applicable to the situations where the observed curves are recorded in the irregular and sparse fashion. In this paper, we model the associations between paired functional data into a linear mixed-effects model framework by relating two sets of curves using canonical correlation analysis. The proposed approach automatically deals with irregularly or sparsely observed functional data, and brings a new insight into the interpretation of canonical correlation analysis. Numerical studies are carried out to demonstrate finite sample behavior. Two real data applications are provided to illustrate the methodology.

Keywords: Canonical correlation analysis; Functional data analysis; Linear mixed-effects model; Longitudinal data; Reproducing kernel Hilbert spaces (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002280
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:134:y:2015:i:c:p:1-18

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.10.001

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:134:y:2015:i:c:p:1-18