Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors
Jonathan B. Hill
Journal of Multivariate Analysis, 2015, vol. 135, issue C, 131-152
Abstract:
We present a robust Generalized Empirical Likelihood estimator and confidence region for the parameters of an autoregression that may have a heavy tailed heteroscedastic error. The estimator exploits two transformations for heavy tail robustness: a redescending transformation of the error that robustifies against innovation outliers, and weighted least squares instruments that ensure robustness against heavy tailed regressors. Our estimator is consistent for the true parameter and asymptotically normally distributed irrespective of heavy tails.
Keywords: Empirical Likelihood; Heavy tails; Autoregression; Redescending transformation; Tail trimming; Robust estimation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002735
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:135:y:2015:i:c:p:131-152
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.12.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().