EconPapers    
Economics at your fingertips  
 

Sparse semiparametric discriminant analysis

Qing Mai and Hui Zou

Journal of Multivariate Analysis, 2015, vol. 135, issue C, 175-188

Abstract: In recent years, a considerable amount of work has been devoted to generalizing linear discriminant analysis to overcome its incompetence for high-dimensional classification (Witten and Tibshirani, 2011, Cai and Liu, 2011, Mai et al., 2012 and Fan et al., 2012). In this paper, we develop high-dimensional sparse semiparametric discriminant analysis (SSDA) that generalizes the normal-theory discriminant analysis in two ways: it relaxes the Gaussian assumptions and can handle ultra-high dimensional classification problems. If the underlying Bayes rule is sparse, SSDA can estimate the Bayes rule and select the true features simultaneously with overwhelming probability, as long as the logarithm of dimension grows slower than the cube root of sample size. Simulated and real examples are used to demonstrate the finite sample performance of SSDA. At the core of the theory is a new exponential concentration bound for semiparametric Gaussian copulas, which is of independent interest.

Keywords: Gaussian copulas; Linear discriminant analysis; High-dimension asymptotics; Semiparametric model (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002747
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:135:y:2015:i:c:p:175-188

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.12.009

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:135:y:2015:i:c:p:175-188