MDR method for nonbinary response variable
Alexander Bulinski and
Alexander Rakitko
Journal of Multivariate Analysis, 2015, vol. 135, issue C, 25-42
Abstract:
For nonbinary response variable depending on a finite collection of factors with values in a finite subset of R the problem of the optimal forecast is considered. The quality of prediction is described by the error function involving a penalty function. The criterion of almost sure convergence to unknown error function for proposed estimates constructed by means of a prediction algorithm and K-fold cross-validation procedure is established. It is demonstrated that imposed conditions admit the efficient verification. The developed approach permits to realize the dimensionality reduction of factors under consideration. One can see that the results obtained provide the base to identify the set of significant factors. Such problem arises, e.g., in medicine and biology. The central limit theorem for proposed statistics is proven as well. In this way one can indicate the approximate confidence intervals for employed error function.
Keywords: Nonbinary response variable; Factors; Error function; Penalty function; i.i.d. observations; Prediction algorithm; K-fold cross-validation; Error estimation; Criterion of a.s. estimators convergence; Dimensionality reduction of factors; Central limit theorem (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002632
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:135:y:2015:i:c:p:25-42
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2014.11.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().