EconPapers    
Economics at your fingertips  
 

Bayesian structure learning in graphical models

Sayantan Banerjee and Subhashis Ghosal

Journal of Multivariate Analysis, 2015, vol. 136, issue C, 147-162

Abstract: We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, where the dimension p may be large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the graphical lasso. In this paper, we consider a Bayesian approach to the problem. We use priors which put a mixture of a point mass at zero and certain absolutely continuous distribution on off-diagonal elements of the precision matrix. Hence the resulting posterior distribution can be used for graphical structure learning. The posterior convergence rate of the precision matrix is obtained and is shown to match the oracle rate. The posterior distribution on the model space is extremely cumbersome to compute using the commonly used reversible jump Markov chain Monte Carlo methods. However, the posterior mode in each graph can be easily identified as the graphical lasso restricted to each model. We propose a fast computational method for approximating the posterior probabilities of various graphs using the Laplace approximation approach by expanding the posterior density around the posterior mode. We also provide estimates of the accuracy in the approximation.

Keywords: Graphical lasso; Graphical models; Laplace approximation; Posterior convergence; Precision matrix (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000202
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:136:y:2015:i:c:p:147-162

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.01.015

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:147-162