EconPapers    
Economics at your fingertips  
 

Parametric and semiparametric reduced-rank regression with flexible sparsity

Heng Lian, Sanying Feng and Kaifeng Zhao

Journal of Multivariate Analysis, 2015, vol. 136, issue C, 163-174

Abstract: We consider joint rank and variable selection in multivariate regression. Previously proposed joint rank and variable selection approaches assume that different responses are related to the same set of variables, which suggests using a group penalty on the rows of the coefficient matrix. However, this assumption may not hold in practice and motivates the usual lasso (l1) penalty on the coefficient matrix. We propose to use the gradient-proximal algorithm to solve this problem, which is a recent development in optimization. We also present some theoretical results for the proposed estimator with the l1 penalty. We then consider several extensions including adaptive lasso penalty, sparse group penalty, and additive models. The proposed methodology thus offers a much more complete set of tools in high-dimensional multivariate regression. Finally, we present numerical illustrations based on simulated and real data sets.

Keywords: Additive models; Oracle inequality; Reduced-rank regression; Sparse group lasso (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000184
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:136:y:2015:i:c:p:163-174

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.01.013

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:163-174