EconPapers    
Economics at your fingertips  
 

Heteroscedasticity checks for single index models

Xuehu Zhu, Xu Guo (), Lu Lin and Lixing Zhu

Journal of Multivariate Analysis, 2015, vol. 136, issue C, 41-55

Abstract: To test heteroscedasticity in single index models, in this paper two test statistics are proposed via quadratic conditional moments. Without the use of dimension reduction structure, the first test has the usual convergence rate in nonparametric sense. Under the dimension reduction structure of mean and variance functions, the second one has faster convergence rate to its limit under the null hypothesis, and can detect local alternative hypotheses distinct from the null at a much faster rate than the one the first test can achieve. Numerical studies are also carried out to evaluate the performance of the developed tests. Interestingly, the second one works much better than the first one if the variance function does have a dimension reduction structure. However, it is not robust against the violation of dimension reduction structure, in other words, the power performance of the second test may not be encouraging if without the dimension reduction structure.

Keywords: Heteroscedasticity check; Single index model; Nonparametric estimation; Dimension reduction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000123
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:136:y:2015:i:c:p:41-55

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.01.007

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2022-09-09
Handle: RePEc:eee:jmvana:v:136:y:2015:i:c:p:41-55