EconPapers    
Economics at your fingertips  
 

Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions

T. Tony Cai, Tengyuan Liang and Harrison H. Zhou

Journal of Multivariate Analysis, 2015, vol. 137, issue C, 161-172

Abstract: Differential entropy and log determinant of the covariance matrix of a multivariate Gaussian distribution have many applications in coding, communications, signal processing and statistical inference. In this paper we consider in the high-dimensional setting optimal estimation of the differential entropy and the log-determinant of the covariance matrix. We first establish a central limit theorem for the log determinant of the sample covariance matrix in the high-dimensional setting where the dimension p(n) can grow with the sample size n. An estimator of the differential entropy and the log determinant is then considered. Optimal rate of convergence is obtained. It is shown that in the case p(n)/n→0 the estimator is asymptotically sharp minimax. The ultra-high-dimensional setting where p(n)>n is also discussed.

Keywords: Asymptotic optimality; Central limit theorem; Covariance matrix; Determinant; Differential entropy; Minimax lower bound; Sharp minimaxity (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1500038X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:137:y:2015:i:c:p:161-172

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.02.003

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:137:y:2015:i:c:p:161-172