EconPapers    
Economics at your fingertips  
 

On an interaction function for copulas

Dorota Kurowicka and Wim T. van Horssen

Journal of Multivariate Analysis, 2015, vol. 138, issue C, 127-142

Abstract: We study properties of a local dependence function of Wang for copulas. In this paper this dependence function is called the mixed derivative measure of interactions as it is a mixed derivative of a log of a density function. It is stressed that this measure is not margin free in the sense that the interaction function of a density and the corresponding copula are not equal. We show that there is no Archimedean copula with constant interactions. The interaction function is positive (negative) for an Archimedean copula density whose second derivative of the generator is log convex (log concave). Moreover, the only Archimedean copula with interactions proportional to its density is Frank’s copula. We obtain some preliminary results concerning the connection between the behaviour of the interaction function and the tail dependence of the distribution. Moreover, the notion of an interaction function has been extended to more than two dimensional case, and we study its properties for a canonical Archimedean copula.

Keywords: Local dependence function; Copulae; Archimedean copulae; Complete monotonic functions; d-monotonic functions; Tail dependence; Tail order (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X14002863
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:138:y:2015:i:c:p:127-142

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2014.12.012

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:138:y:2015:i:c:p:127-142