A sampling theorem for multivariate stationary processes
Mohsen Pourahmadi
Journal of Multivariate Analysis, 1983, vol. 13, issue 1, 177-186
Abstract:
The notion of sampling for second-order q-variate processes is defined. It is shown that if the components of a q-variate process (not necessarily stationary) admits a sampling theorem with some sample spacing, then the process itself admits a sampling theorem with the same sample spacing. A sampling theorem for q-variate stationary processes, under a periodicity condition on the range of the spectral measure of the process, is proved in the spirit of Lloy's work. This sampling theorem is used to show that if a q-variate stationary process admits a sampling theorem, then each of its components will admit a sampling theorem too.
Keywords: Sampling; theorem; stationary; processes; multivariate; processes; matrix-valued; measures; Random-Nikodym; derivative (search for similar items in EconPapers)
Date: 1983
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(83)90012-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:13:y:1983:i:1:p:177-186
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().