Asymptotic normal distribution of multidimensional statistics of dependent random variables
Rodolfo De Dominicis
Journal of Multivariate Analysis, 1983, vol. 13, issue 2, 302-309
Abstract:
A central limit theorem for multidimensional processes in the sense of [9 and 10] is proved. In particular the asymptotic normal distribution of a sum of dependent random functions of m variables defined on the positive part of the integral lattice is established by the method of moments. The results obtained can be used, for example, in proving the asymptotic normality of different statistics of n0-dependent random variables as well as to determine the asymptotic behaviour of the resultant of reflected waves of telluric type.
Keywords: central; limit; theorem; multidimensional; random; processes; dependent; random; variables; reflected; telluric; waves (search for similar items in EconPapers)
Date: 1983
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(83)90028-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:13:y:1983:i:2:p:302-309
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().