Mesures majorantes et loi du logarithme itéré pour les variables aléatoires sous-gaussiennes
Bernard Heinkel
Journal of Multivariate Analysis, 1983, vol. 13, issue 2, 353-360
Abstract:
It is shown that for the elements X of a large class of subgaussian random variables with values in (C(S), ·[infinity]) the existence of a probability measure [lambda] on S such that: (where [psi] denotes the inverse function of x --> exp x2L2x) is sufficient to imply that X satisfies the law of the iterated logarithm.
Keywords: Majorizing; measures; law; of; the; iterated; logarithm; subgaussian; random; variables (search for similar items in EconPapers)
Date: 1983
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(83)90031-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:13:y:1983:i:2:p:353-360
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().