Asymptotic properties of the misclassification rates for Euclidean Distance Discriminant rule in high-dimensional data
Hiroki Watanabe,
Masashi Hyodo,
Takashi Seo and
Tatjana Pavlenko
Journal of Multivariate Analysis, 2015, vol. 140, issue C, 234-244
Abstract:
Performance accuracy of the Euclidean Distance Discriminant rule (EDDR) is studied in the high-dimensional asymptotic framework which allows the dimensionality to exceed sample size. Under mild assumptions on the traces of the covariance matrix, our new results provide the asymptotic distribution of the conditional misclassification rate and the explicit expression for the consistent and asymptotically unbiased estimator of the expected misclassification rate. To get these properties, new results on the asymptotic normality of the quadratic forms and traces of the higher power of Wishart matrix, are established. Using our asymptotic results, we further develop two generic methods of determining a cut-off point for EDDR to adjust the misclassification rates. Finally, we numerically justify the high accuracy of our asymptotic findings along with the cut-off determination methods in finite sample applications, inclusive of the large sample and high-dimensional scenarios.
Keywords: High-dimensional framework; Conditional error rate; Expected error rate (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001232
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:140:y:2015:i:c:p:234-244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.05.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().