Density deconvolution from repeated measurements without symmetry assumption on the errors
Fabienne Comte and
Johanna Kappus
Journal of Multivariate Analysis, 2015, vol. 140, issue C, 31-46
Abstract:
We consider deconvolution from repeated observations with unknown error distribution. Until now, this model has mostly been studied under the additional assumption that the errors are symmetric.
Keywords: Nonparametric estimation; Density deconvolution; Repeated measurements; Panel data (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15000925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:140:y:2015:i:c:p:31-46
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.04.004
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().