Simultaneous estimation of linear conditional quantiles with penalized splines
Heng Lian,
Jie Meng and
Zengyan Fan
Journal of Multivariate Analysis, 2015, vol. 141, issue C, 1-21
Abstract:
We consider smooth estimation of the conditional quantile process in linear models using penalized splines. For linear quantile regression problems, usually separate models are fitted at a finite number of quantile levels and then information from different quantiles is combined in interpreting the results. We propose a smoothing method based on penalized splines that computes the conditional quantiles all at the same time. We consider both fixed-knots and increasing-knots asymptotics of the estimator and show that it converges to a multivariate Gaussian process. Simulations show that smoothing can result in more accurate estimation of the conditional quantiles. The method is further illustrated on a real data set. Empirically (although not theoretically) we observe that the crossing quantile curves problem can often disappear using the smoothed estimator.
Keywords: Gaussian process; Quantile process; Spline approximation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001554
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:141:y:2015:i:c:p:1-21
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.06.010
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().