EconPapers    
Economics at your fingertips  
 

Nonparametric and semiparametric compound estimation in multiple covariates

Richard Charnigo, Limin Feng and Cidambi Srinivasan

Journal of Multivariate Analysis, 2015, vol. 141, issue C, 179-196

Abstract: We consider the problem of simultaneously estimating a mean response function and its partial derivatives, when the mean response function depends nonparametrically on two or more covariates. To address this problem, we propose a “compound estimation” approach, in which differentiation and estimation are interchangeable: an estimated partial derivative is exactly equal to the corresponding partial derivative of the estimated mean response function. Compound estimation yields essentially optimal convergence rates and may exhibit substantially smaller squared error in finite samples compared to local regression. We also explain how to employ compound estimation under more general circumstances, when the mean response function depends parametrically on some additional covariates and the observations are not statistically independent. In a case study, we apply compound estimation to examine how the progression of Parkinson’s disease may relate to a subject’s age and the signal fractal scaling exponent of the subject’s recorded voice. Especially among those intermediate in age, an abnormal signal fractal scaling exponent may portend greater symptom progression.

Keywords: Derivative; Parkinson’s disease; Random effects; Regression; Repeated measures; Telemonitoring (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001657
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:141:y:2015:i:c:p:179-196

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.07.005

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:141:y:2015:i:c:p:179-196