EconPapers    
Economics at your fingertips  
 

Isotropic covariance functions on spheres: Some properties and modeling considerations

Joseph Guinness and Montserrat Fuentes

Journal of Multivariate Analysis, 2016, vol. 143, issue C, 143-152

Abstract: Introducing flexible covariance functions is critical for interpolating spatial data since the properties of interpolated surfaces depend on the covariance function used for Kriging. An extensive literature is devoted to covariance functions on Euclidean spaces, where the Matérn covariance family is a valid and flexible parametric family capable of controlling the smoothness of corresponding stochastic processes. Many applications in environmental statistics involve data located on spheres, where less is known about properties of covariance functions, and where the Matérn is not generally a valid model with great circle distance metric. In this paper, we advance the understanding of covariance functions on spheres by defining the notion of and proving a characterization theorem for m times mean square differentiable processes on d-dimensional spheres. Stochastic processes on spheres are commonly constructed by restricting processes on Euclidean spaces to spheres of lower dimension. We prove that the resulting sphere-restricted process retains its differentiability properties, which has the important implication that the Matérn family retains its full range of smoothness when applied to spheres so long as Euclidean distance is used. The restriction operation has been questioned for using Euclidean instead of great circle distance. To address this question, we construct several new covariance functions and compare them to the Matérn with Euclidean distance on the task of interpolating smooth and non-smooth datasets. The Matérn with Euclidean distance is not outperformed by the new covariance functions or the existing covariance functions, so we recommend using the Matérn with Euclidean distance due to the ease with which it can be computed.

Keywords: Kriging; Fourier series; Positive definite functions (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002109
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:143-152

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.08.018

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:143-152