Bayesian analysis of multivariate stable distributions using one-dimensional projections
Mike Tsionas
Journal of Multivariate Analysis, 2016, vol. 143, issue C, 185-193
Abstract:
In this paper we take up Bayesian inference in general multivariate stable distributions. We exploit the representation of Matsui and Takemura (2009) for univariate projections, and the representation of the distributions in terms of their spectral measure. We present efficient MCMC schemes to perform the computations when the spectral measure is approximated discretely or, as we propose, by a normal distribution. Appropriate latent variables are introduced to implement MCMC. In relation to the discrete approximation, we propose efficient computational schemes based on the characteristic function.
Keywords: Multivariate stable distributions; Spectral measure; Markov Chain Monte Carlo; Bayesian inference (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:185-193
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.09.005
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().