The Fine–Gray model under interval censored competing risks data
Chenxi Li
Journal of Multivariate Analysis, 2016, vol. 143, issue C, 327-344
Abstract:
We consider semiparametric analysis of competing risks data subject to mixed case interval censoring. The Fine–Gray model (Fine and Gray, 1999) is used to model the cumulative incidence function and is coupled with sieve semiparametric maximum likelihood estimation based on univariate or multivariate likelihood. The univariate likelihood of cause-specific data enables separate estimation of cumulative incidence function for each competing risk, in contrast with the multivariate likelihood of full data which estimates cumulative incidence functions for multiple competing risks jointly. Under both likelihoods and certain regularity conditions, we show that the regression parameter estimator is asymptotically normal and semiparametrically efficient, although the spline-based sieve estimator of the baseline cumulative subdistribution hazard converges at a rate slower than root-n. The proposed method is evaluated by simulation studies regarding its finite sample performance and is illustrated by a competing risk analysis of data from a dementia cohort study.
Keywords: Competing risk; Cumulative incidence function; Interval censored data; Subdistribution hazard; Semiparametric efficiency; Sieve estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:327-344
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.10.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().