EconPapers    
Economics at your fingertips  
 

Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property

Francesco Giordano and Maria Lucia Parrella

Journal of Multivariate Analysis, 2016, vol. 143, issue C, 71-93

Abstract: The local polynomial estimator is particularly affected by the curse of dimensionality, which reduces the potential of this tool for large-dimensional applications. We propose an estimation procedure based on the local linear estimator and a sparseness condition that focuses on nonlinearities in the model. Our procedure, called BID (bias inflation–deflation), is automatic and easily applicable to models with many covariates without requiring any additivity assumption. It is an extension of the RODEO method, and introduces important new contributions: consistent estimation of the multivariate optimal bandwidth (the tuning parameter of the estimator); consistent estimation of the multivariate bias-corrected regression function and confidence bands; and automatic identification and separation of nonlinear and linear effects. Some theoretical properties of the method are discussed. In particular, we show the nonparametric oracle property. For linear models, BID automatically reaches the optimal rate Op(n−1/2), equivalent to the parametric case. A simulation study shows the performance of the procedure for finite samples.

Keywords: Multivariate nonparametric regression; Variable selection; Multivariate bandwidth selection; Multivariate confidence bands (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:71-93

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.08.016

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:71-93