EconPapers    
Economics at your fingertips  
 

The Dual Central Subspaces in dimension reduction

Ross Iaci, Xiangrong Yin and Lixing Zhu

Journal of Multivariate Analysis, 2016, vol. 145, issue C, 178-189

Abstract: Existing dimension reduction methods in multivariate analysis have focused on reducing sets of random vectors into equivalently sized dimensions, while methods in regression settings have focused mainly on decreasing the dimension of the predictor variables. However, for problems involving a multivariate response, reducing the dimension of the response vector is also desirable and important. In this paper, we develop a new concept, termed the Dual Central Subspaces (DCS), to produce a method for simultaneously reducing the dimensions of two sets of random vectors, irrespective of the labels predictor and response. Different from previous methods based on extensions of Canonical Correlation Analysis (CCA), the recovery of this subspace provides a new research direction for multivariate sufficient dimension reduction. A particular model-free approach is detailed theoretically and the performance investigated through simulation and a real data analysis.

Keywords: Canonical Correlation Analysis; Dimension reduction; Dual Central Subspaces; Multivariate analysis; Visualization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15003292
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:145:y:2016:i:c:p:178-189

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.12.003

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:145:y:2016:i:c:p:178-189