Minimax estimation of a normal covariance matrix with the partial Iwasawa decomposition
Hisayuki Tsukuma
Journal of Multivariate Analysis, 2016, vol. 145, issue C, 190-207
Abstract:
This paper addresses the problem of estimating the normal covariance matrix relative to the Stein loss. The partial Iwasawa decomposition is used to reduce the original estimation problem to simultaneous estimation for variances and means of some normal distributions. The variances and the means are closely related to, respectively, the diagonal and the below-diagonal elements of a lower triangular matrix which is made from the Cholesky decomposition of the covariance matrix. Shrinkage type procedures are proposed for improvements not only on the diagonal elements but also on the below-diagonal elements corresponding to the James and Stein minimax estimator of the covariance matrix.
Keywords: Autoregressive model; Cholesky decomposition; Inadmissibility; Incomplete data; Minimaxity; LDL⊤ decomposition; Moving average model; Partial Iwasawa decomposition; Shrinkage estimator; Statistical decision theory (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15003395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:145:y:2016:i:c:p:190-207
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.12.013
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().