A new estimator for efficient dimension reduction in regression
Wei Luo and
Xizhen Cai
Journal of Multivariate Analysis, 2016, vol. 145, issue C, 236-249
Abstract:
In this paper we propose a new estimator for efficient dimension reduction in regression, based on the work in Luo et al. (2014). Previous efficient estimators have been proposed by multiple authors, however under additional restrictive assumptions on the conditional variance of the response variable given the predictor vector. These assumptions also complicate the implementation. In contrast, the new estimator employs no such assumptions, and thus is far more applicable and more convenient to use. By an extended double-robustness property, it reaches asymptotic efficiency under fairly general conditions. Its finite-sample effectiveness is further illustrated by simulation studies and a real data example.
Keywords: Conditional variance; Double robustness; Efficient estimation; Regression; Sufficient dimension reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:145:y:2016:i:c:p:236-249
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.12.014
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().