Tails of weakly dependent random vectors
Peter Tankov
Journal of Multivariate Analysis, 2016, vol. 145, issue C, 73-86
Abstract:
We introduce a new functional measure of tail dependence for weakly dependent (asymptotically independent) random vectors, termed weak tail dependence function. The new measure is defined at the level of copulas and we compute it for several copula families such as the Gaussian copula, copulas of a class of Gaussian mixture models, certain Archimedean copulas and extreme value copulas. The new measure allows to quantify the tail behavior of certain functionals of weakly dependent random vectors at the log scale.
Keywords: Tail dependence; Asymptotic independence; Copulas; Regular variation; Gaussian mixtures (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15003346
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:145:y:2016:i:c:p:73-86
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.12.008
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().