Relative-error prediction in nonparametric functional statistics: Theory and practice
Jacques Demongeot,
Ali Hamie,
Ali Laksaci and
Mustapha Rachdi
Journal of Multivariate Analysis, 2016, vol. 146, issue C, 261-268
Abstract:
In this paper, an alternative kernel estimator of the regression operator of a scalar response variable Y given a random variable X taking values in a semi-metric space is considered. The constructed estimator is based on the minimization of the mean squared relative error. This technique is useful in analyzing data with positive responses, such as stock prices or life times. Least squares or least absolute deviation are among the most widely used criteria in statistical estimation for regression models. However, in many practical applications, especially in treating, for example, the stock price data, the size of the relative error rather than that of the error itself, is the central concern of the practitioners. This paper offers then an alternative to traditional estimation methods by considering the minimization of the least absolute relative error for operatorial regression models. We prove the strong and the uniform consistencies (with rates) of the constructed estimator. Moreover, the mean squared convergence rate is given and the asymptotic normality of the proposed estimator is proved. Finally, supportive evidence is shown by simulation studies and an application on some economic data was performed.
Keywords: Mean square relative error; Nonparametric estimation; Functional data; Regression operator; Positive responses; Asymptotic normality; Small ball property; Stock price; Economic data (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X1500233X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:146:y:2016:i:c:p:261-268
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.09.019
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().