EconPapers    
Economics at your fingertips  
 

Kriging for Hilbert-space valued random fields: The operatorial point of view

Alessandra Menafoglio and Giovanni Petris

Journal of Multivariate Analysis, 2016, vol. 146, issue C, 84-94

Abstract: We develop a comprehensive framework for linear spatial prediction in Hilbert spaces. We explore the problem of Best Linear Unbiased (BLU) prediction in Hilbert spaces through an original point of view, based on a new Operatorial definition of Kriging. We ground our developments on the theory of Gaussian processes in function spaces and on the associated notion of measurable linear transformation. We prove that our new setting allows (a) to derive an explicit solution to the problem of Operatorial Ordinary Kriging, and (b) to establish the relation of our novel predictor with the key concept of conditional expectation of a Gaussian measure. Our new theory is posed as a unifying theory for Kriging, which is shown to include the Kriging predictors proposed in the literature on Functional Data through the notion of finite-dimensional approximations. Our original viewpoint to Kriging offers new relevant insights for the geostatistical analysis of either finite- or infinite-dimensional georeferenced dataset.

Keywords: Geostatistics; Gaussian processes; Conditional expectations; Measurable linear transformations (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15001578
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:146:y:2016:i:c:p:84-94

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2015.06.012

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:146:y:2016:i:c:p:84-94