Influence measures and stability for graphical models
Avner Bar-Hen and
Jean-Michel Poggi
Journal of Multivariate Analysis, 2016, vol. 147, issue C, 145-154
Abstract:
Graphical models allow to represent a set of random variables together with their probabilistic conditional dependencies. Various algorithms have been proposed to estimate such models from data. The focus of this paper is on individual observations diagnosis issues. The use of an influence measure is a classical diagnostic method to measure the perturbation induced by a single element, in other terms we consider stability issue through jackknife. For a given graphical model, we provide tools to perform diagnosis on observations. In a second step we propose a filtering of the dataset to obtain a stable network. All along the paper an application to a gene expression dataset illustrates the proposals.
Keywords: Influence measure; Graphical model; Robustness (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16000099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:147:y:2016:i:c:p:145-154
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.01.006
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().